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Abstract. I t  is pointed out that the eight-vertex model, the triplet model and the Ashkin- 
Teller model have a common exponent relation /I, = f - $a that is not a consequence of 
scaling theory. It is proposed that this relation reflects a special symmetry of these models 
and this proposal is related to possible classification of two-dimensional systems. 

1. Introduction 

We investigate the critical behaviour of some systems in which there are two natural 
order parameters and suggest that the critical point in some such systems may correspond 
to a point of special symmetry. Since the examples that we present are mostly exact 
results, two-dimensional systems are considered exclusively. In particular, we consider 
the Ashkin-Teller model (Ashkin and Teller 1943), the eight-vertex model (Fan and Wu 
1970) and the triplet model which has three-spin interactions around the faces of a 
triangular lattice (Wood and Griffiths 1972). There are a number of exact results known 
for these systems ; a further account will be given in the following sections. 

In general the exact results obtained have been in agreement with general scaling 
theories that predict relations between critical exponents. These theories arose from 
the work of Widom (1965), Domb and Hunter (1965) and Patashinskii and Pokrovskii 
(1966) that indicated a homogeneous function form of the critical equation of state. The 
homogeneity properties were related to length scaling by Kadanoff (1966). Following the 
work of Wilson (1971a, b) in using length scaling as the basis of renormalization group 
techniques, it has become possible to derive expansions for the values of exponents as 
well as for relations between them. 

The importance of the symmetry of systems is emphasized by the concepts of smooth- 
ness (Griffiths 1970) and universality (Kadanoff 1971) that suggest that critical exponents 
should change only when there is a change in the symmetry group of the system 
Hamiltonian. This formulation is not sufficiently general to include the eight-vertex 
model which has its exponents varying continuously with interaction strengths (Baxter 
1971). Kadanoff and Wegner (1971) have related this behaviour to the special scaling 
properties of the interaction. Suzuki (1974) has proposed the concept of weak universal- 
ity to include the eight-vertex model. 

The work in this paper concerns the relation 

p =+-& (1.1) 
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where f ie is the critical exponent describing the manner in which the spontaneous 
polarization goes to zero at the critical point. This relation lies outside any of the 
scaling theories described above. It is essentially empirical, applying to the eight-vertex 
model (Baxter and Kelland 1974), the triplet model (Baxter et a1 1975) and apparently 
to the Ashkin-Teller model (see 0 2). The most plausible explanation is that it represents 
a symmetry of the system at the critical point. Equation (1.1) does not apply to certain 
less symmetric systems (Oitmaa and Enting 1975) and does not apply in three dimensions. 
We are not able to present a complete explanation for the relation. The present account 
does, however, point out a number of significant principles in the theory of critical 
phenomena. Equation (1. l),  assuming applicability to the Ashkin-Teller model, has 
been used to predict the critical exponents of the four-state Potts model (Enting 1975b). 

The outline of the remainder of the paper is as follows. Section 2 discusses polariza- 
tion exponents and the significance of the polarization in the various systems con- 
sidered. Section 3 considers (1.1) as a symmetry relation and discusses the significance 
of these results for the classification of systems into universality classes. The appendixes 
give mathematical details, appendix 1 discussing a transformation of the triplet model 
and appendix 2 relating a perturbation expansion for equation (1.1) in the Ashkin-Teller 
model to lattice-lattice scaling theory. 

2. Polarization 

As emphasized by Barber and Baxter (1973), the eight-vertex model has two natural 
order parameters, the polarization P and the magnetization M ,  with conjugate fields E 
and H .  If the eight-vertex model is regarded as a system of spins oi = k 1 on a square 
lattice, then M = (oi) and P = (oio,) ( i , j  nearest neighbours). The interactions on 
the eight-vertex model are two-spin interactions between second-nearest neighbours 
(thus giving two independent sublattices) and four-spin interactions around the faces 
of the lattice. This means that the polarization gives the correlation between the sub- 
lattices. 

The exponents such as B, y, 6 must be subscripted to indicate whether they refer to 
M or P,  and this is done by using the subscripts m or e (for magnetic or electric) (Enting 
1973). 

To describe scaling predictions we use the formalism of Hankey and Stanley (1972) 
and assume that the singular part of the free energy can be written as a generalized 
homogeneous function 

G ( ~ " E ,  i b H ,  ACE) = iG(r, H ,  E),  
whence 

x = x' = (2a- l)/a 

P e  = (l-c)/a 
;le = y; = (2c- l)/a 

6, = c/(l - c) 

B m  = (l-b)/a 
i" = ym = (2b- l)/a 

6, = b/( 1 - b). 
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In addition we can make assumptions about scaling of the correlations 

dv = 2-Q (2.9) 

Y e  = ( ~ - I ? , ) v  (2.10) 

;" = (2-qm)v. (2.11) 

This means that all exponents can be expressed in terms of a, b, c and the dimensionality d .  
For the eight-vertex model the Baxter (1971) solution for Q = Q' determines a and 

shows that it is a continuous function of interaction strengths. The results of Barber 
and Baxter (1973) give Pm and indicate b = g. Series expansions for 6, (Enting and 
Gaunt 1974) give 

c = "+'a. 4 4  (2.12) 

Combining (2.12), (2.2) and (2.3) gives equation (l . l) ,  p, = +-&, a relation that has been 
confirmed directly by Baxter and Kelland (1974). The prediction S, = 15 obtained by 
substituting b = into (2.8) has been tested by Gaunt (1974). Equation (2.9) has been 
confirmed by Johnson et a1 (1972). 

The triplet model (Wood and Griffiths 1972) consists of a triangular lattice with 
spins gi = & 1, and a three-spin interaction around each triangle. 

The known values of the exponents are 

Q = Q ' = '  3 

v = L  3 

(Baxter and Wu 1973, 1974, Baxter 1974) and 

(2.13) 

(2.14) 

p = p  e m = L  1 2  (2.15) 

(Baxter et a1 1975). These exponents satisfy equation (1.1). The magnetization is again 
(gi) and the polarization is the nearest-neighbour correlation function. 

While this model seems rather unlike the eight-vertex model, a simple transformation 
shows it to be quite similar. We sum over all configurations of spins on a third of the 
lattice sites to give a honeycomb lattice with two-spin and four-spin interactions. A 
suitable choice of interaction strengths gives a partition function that differs from the 
triplet model partition function only by a non-singular factor. The two-spin interaction 
acts between second neighbours on the honeycomb lattice, giving two independent 
triangular lattices coupled by the four-spin interactions. The details of the transforma- 
tion are given in appendix 1. 

The final example that we consider is the Ashkin-Teller (AT) model (Ashkin and 
Teller 1943). This is defined as having two spins oi, si = k 1 on each site. The Hamilton- 
ian is 

For the general case, the work of Wu and Lin (1974) indicates that there should be two 
transitions. We shall consider only J4 < J = J' in which case only one transition is 
expected. Even for this case the critical exponents are known only for J, = 0 when the 
system is two independent Ising systems and for J ,  = J = J' (the four-state Potts model) 
where the exponents have been conjectured by Enting (1975b). If we consider the 
Ashkin-Teller model for J4 Y 0 we can determine the manner in which the critical 
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exponents behave for small J,, using the same techniques that Kadanoff and Wegner 
(1971) used for the eight-vertex model. 

We begin by considering an arbitrary function T and assume a critical behaviour 

T - t z y .  (2.17) 

Then 

d T  d dY d 
- = T-1ntfT-lnc+Ty-lnr. dx dx dx dx 

(2.18) 

Equation (2.18) shows that the rate of change of exponent will be given by the terms in 
dT/dx that behave as Tln z. 

For the Ashkin-Teller model we consider an operator 6 of the form 6( { ai})6( { s,}), 
and take 

(2.19) 

where (...) denotes the expectation value at J, = 0 except when this is obviously 
inconsistent with the explicit form of the expressions as in (a/apJ,)(  6) .  

If on the Ising sublattices, ( ~ ( { c T } ) ) ,  (6({s})) vary as zyo then 

This means that the final two terms in (2.19) give a contribution to (d /apJ , ) (b> of 

az 
W J  ( 6 ) z -  'yo-((aiaj> + (SiSj)). 

Examination of this expression shows that there will be a term corresponding to the 
second term in (2.18) because of the z In z term in (aio,), ( s i s J )  at J, = 0. This leads to 
(6) having an exponent that behaves as 

where A is the specific heat amplitude of the king subsystem and q is the lattice coordina- 
tion number. 

Essentially equivalent arguments show that functions of the form &{a)) + 6({s}) 
have exponents varying as 

yo( 1 - 2J4A/qJ2fi  + . . . ). 
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Putting 
2J4A/qJ2P = g (2.21) 

we have 

p, = $(1 -g+ . . . ) 
and since susceptibility is a mixture of sum and product forms of 6, 

(2.22) 

Ym = i ( l - g +  ' " ) ,  (2.23) 

whence by scaling 

a = 2g+ (2.24) 

We cannot investigate y e  directly because x c  = dP/dE corresponds to neither the sum 
form of (6) nor the product form. The polarization is a simple product, cisi, but it is 
an exception to the discussion above. Not only do the final terms in (2.19) have a In E 

contribution but the first term also behaves as In E,  since the energy-magnetization 
correlation behaves as r-d '2 .  This implies 

0, = a ( l -g -h+  . . . ) .  (2.25) 

For the square lattice the leading terms in J,/J are the same for the Ashkin-Teller and 
eight-vertex models and so we have g = h by using either the exact result of Baxter and 
Kelland (1974) or, as described by Enting and Gaunt (1974), scaling perturbation 
expansions based on the correlation amplitudes of Hecht (1967). 

Equation (2.21) shows that g will be lattice-dependent, but if one makes an assump- 
tion of a lattice-lattice scaling of correlation amplitudes, then it can be shown that g/h 
should be independent of which two-dimensional lattice is considered. The detailed 
derivation of this result is given in appendix 2. On the basis of this lattice-lattice scaling 
assumption, we have for all two-dimensional lattices 

g = h  (2.26) 

and so to  leading order in J,/J, 
p =1-1 

e 4 4u. (2.27) 

This relation apparently holds to first order in J,/J for the Ashkin-Teller model on all 
two-dimensional lattices, even though the individual exponents are lattice-independent 
only to zeroth order. The predictions for the four-state Potts model exponents (Enting 
1975b) were based on the assumption that (2.27) holds for all J,, at least up to 5, = J .  
Those results indicate that J, = J is, like 5, = 0, a special point at which the critical 
exponents are lattice-independent. 

3. Symmetry and universality classes 

Since the relation p, = +-& does not appear to be a scaling relation of any sort, the 
most plausible explanation is that it represents a special symmetry of the critical point. 
This symmetry, with P4 behaving like the energy, is also reflected in the critical corre- 
lations, since scaling predicts that the polarization-polarization correlation exponent is 
q e  = (1 - a)/(2 - U), while the energy-energy correlation exponent is qE = 4( 1 - u)/(2 -U) 
(qE is the nE of Gunton and Buckingham 1968). If there is some such energy polarization 
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symmetry, it would seem to hold only at the critical point and could possibly be inter- 
preted as a symmetry of the fixed point of the renormalization group, but while S O  little 
is known about the renormalization transformation of these models, this interpretation 
must remain speculative. 

The existence of this special symmetry complicates the question of how to classify 
these models. The most successful classification of cooperative systems has been the 
construction of universality classes according to spin dimensionality D and lattice 
dimensionality d .  Suzuki (1974) has proposed and extended the concept to weak 
universality classes characterized by having the same values for exponent combinations 
such as PJv, 6,, (2 -U)/\!. These classes have not yet been related to the system sym- 
metry so that, for example, it remains unclear whether the random cluster models (Potts 
models), whose exponents appear to vary continuously, should be in the same weak 
universality class as the eight-vertex model. The difficulty would seem to be an in- 
adequate understanding of the symmetry, since the eight-vertex model symmetry is 
unclear and the random cluster model formulation (Fortuin and Kasteleyn 1972) conceals 
the symmetry of the Potts model. 

The other possibility is that the special symmetry represented by (1.1) is connected 
with the special properties that enable various exact solutions to be found for these 
models. The special nature of the critical point is brought out strikingly by the Ashkin-- 
Teller models for which exact results can be obtained only at the critical point (Wegner 
1972, Enting 1975a). This uncertainty about the validity of extrapolating from the 
special cases is a problem common to all such work involving specialized exact results. 
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Appendix 1. Transformation of the triplet model 

In transforming the triplet model we consider transformation of the high-temperature 
expansion. We divide the triangular lattice into three sublattices A, B, C so that each 
face has each vertex on a different sublattice. We want an effective Hamiltonian, 
such that 

where f ( P J 3 )  is a non-singular function. 

U, c, e on sublattice A and b, d, f on sublattice B. 

(1 +wabg)(l+wbcg)(l +wcdg)(l +wdeg)(l +wefg)(l +wfug) x terms independent ofg. 

Z(PJ3) T , A T , B T , c  exP(-Pztrip) = T A T , ,  ex~(-Pr%,,,)f(PJ3) (A.1) 

We consider a single C site rg with a spin variable g = f 1 and its neighbour spins 

The high-temperature expansion for 2 has the form 

Summing over all configurations of g gives 

[ 1 + w6 + (w2 + W4)(S + T + s T)]f(BJ,) 
where 

S = a c + c e + a e  
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T = bd+df+ f b  

w = tanh pJ3. 
The effective Hamiltonian can be chosen so that the contribution for sites U, b, c, d, e,fis 

Xeff = J( 1 + S ) (  1 + T). (‘4.6) 

The corresponding terms in the high-temperature expansion are 

fi(pJ)[l + 3Sc3 + 1 0 5 ~ “  + 1 6 8 ~ ’  + 2 8 0 ~ ~  +43Sv7 +435c8 + 280e9 + 168t)”+ 1050’ I 

+ 3 . 5 ~ ’ ~  + U ”  + ( S  + T+ST)(u+ 7c2 +28u3 + 84u4+ 1 8 9 ~ ’  + 31Sc6 

+400u7 +400tls +315c9+ 1 8 9 ~ ’ ~ +  8 4 ~ ”  +280” +7cI3 + U’“)] (A.7) 

where 

L‘ = tanhpJ 

Equating the ratios of constant term to ( S +  T + S T )  term in (A.7) and (A.2) gives the 
relation connecting c to w. 

This transformation is of additional interest because one can transform spins on the 
A and B triangular sublattices using the techniques described by Niemeyer and van 
Leeuwen (1974). The transformed lattices form a new hexagonal lattice and so one 
has a renormalization group transformation group that preserves the symmetry. To 
first order in perturbation the only non-trivial fixed point is for zero four-spin interaction 
and so is equivalent to the lowest-order approximation described by Niemeyer and van 
Leeuwen. It would be of considerable interest to see if improved approximations were 
able to describe the behaviour of the triplet model. When attempting to construct 
approximate realizations of renormalization group transformations, removing the C 
sublattice leads to a considerable simplification. Applying the Niemeyer and van 
Leeuwen transformation to each of the A, B and C sublattices introduces comparatively 
long-range interactions even in low-order approximations. 

Additional note 

The transformation removing C sublattice sites is based on the work of Baxter and Wu 
(1974). The interpretation in terms of an Ising model with four-spin interactions has been 
considered independently by a number of other workers. 

Appendix 2. Lattice-lattice scaling in perturbation expansions for the Ashkin-Teller 
model 

The function of primary concern in this derivation is C(r, c) where 

W ,  €1 = ( d r o b ( r 0  + 44-0 + r)) - (o(ro).(ro + a)> ( d r o  + r ) ) .  (A.9) 

We are interested in comparing h and g defined by 

g = 2J4A/qJ2P 

ah(.)2 In z = pJ,fq 1 C(r, 
r 

(A. 10) 

(A. 11) 

The factor 3q comes from changing a sum over bonds in (2.19) to a sum over sites in (A. 11). 
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Following the lattice-lattice scaling theory of Betts er a1 (1971) and Ferer and Wortis 
(1972) we assume that for two lattices x, y 

(A. 12) 

(A. 13) 

(A. 14) 

where g, and n, are as defined by Betts et al, and k ,  is the inverse length used by Ferer and 
Wortis. 

We also use the scaling form of the magnetization 

mx(4  = my(Ey) (A. 15) 

and its derivative with respect to E ,  

gx- ":(Ex) = g y  l q E y )  (assuming (A. 14)) (A.16) 

so 

We investigate the logarithmic terms in (A. 11). 

Using the strong scaling relation proposed by Ferer and Wortis, 

(in two dimensions), 

and the expression given by Betts et a1 for the specific heat amplitude 

A 
AY - -( nx gy )'; 

(A.17) 

(A. 18) 

(A. 19) 

(A.20) 

(A.21) 

we have 

(A.22) 
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A number of steps in the development above require comment. In transforming 
sums to integrals we use p to represent the density of sites as was done by Ferer and 
Wortis (1972). We multiply by i q  to represent a density of bonds. The use of (A.20) 
implies that we are making the standard scaling assumption of a single relevant length 
applicable to all correlations. 

The relation (A.22) can be put into the form 

(using square lattice case). 
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